Science : Technology : Engineering : Math

Science (from the Latin word scientia, meaning "knowledge")[1] is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[2][3][4]

The earliest roots of science can be traced to Ancient Egypt and Mesopotamia in around 3500 to 3000 BCE.[5][6] Their contributions to mathematicsastronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes.[5][6] After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages[7] but was preserved in the Muslim world during the Islamic Golden Age.[8] The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived "natural philosophy",[7][9] which was later transformed by the Scientific Revolution that began in the 16th century[10] as new ideas and discoveries departed from previous Greek conceptions and traditions.[11][12][13][14] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape;[15][16][17] along with the changing of "natural philosophy" to "natural science."[18]

Modern science is typically divided into three major branches that consist of the natural sciences (e.g., biologychemistry, and physics), which study nature in the broadest sense; the social sciences (e.g., economicspsychology, and sociology), which study individuals and societies; and the formal sciences (e.g., logicmathematics, and theoretical computer science), which study abstract concepts. There is disagreement,[19][20][21] however, on whether the formal sciences actually constitute a science as they do not rely on empirical evidence.[22][20] Disciplines that use existing scientific knowledge for practical purposes, such as engineering and medicine, are described as applied sciences.[23][24][25][26]

Science is based on research, which is commonly conducted in academic and research institutions as well as in government agencies and companies. The practical impact of scientific research has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the development of commercial productsarmamentshealth care, and environmental protection.

Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia[2]) is the sum of techniquesskillsmethods, and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines to allow for operation without detailed knowledge of their workings. Systems (e.g. machines) applying technology by taking an input, changing it according to the system's use, and then producing an outcome are referred to as technology systems or technological systems.

The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale.

Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions in the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.

Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddismanarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.

Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.[1] The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematicsapplied science, and types of application. See glossary of engineering.

The term engineering is derived from the Latin ingenium, meaning "cleverness" and ingeniare, meaning "to contrive, devise".[2]

The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET)[3] has defined "engineering" as:

The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.[4][5]

Mathematics (from Greekμάθημαmáthēma, 'knowledge, study, learning') includes the study of such topics as quantity (number theory),[1] structure (algebra),[2] space (geometry),[1] and change (mathematical analysis).[3][4][5] It has no generally accepted definition.[6][7]

Mathematicians seek and use patterns[8][9] to formulate new conjectures; they resolve the truth or falsity of such by mathematical proof. When mathematical structures are good models of real phenomena, mathematical reasoning can be used to provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from countingcalculationmeasurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements.[10] Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.[11]

Mathematics is essential in many fields, including natural scienceengineeringmedicinefinance, and the social sciencesApplied mathematics has led to entirely new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics (mathematics for its own sake) without having any application in mind, but practical applications for what began as pure mathematics are often discovered later.[12][13]

STEM Education History

Science, technology, engineering, and mathematics (STEM), previously sciencemathematicsengineering, and technology (SMET),[1] is a broad term used to group together these academic disciplines.[2] This term is typically used when addressing education policy and curriculum choices in schools to improve competitiveness in science and technology development. It has implications for workforce development, national security concerns and immigration policy.[2] The science in STEM typically refers to two out of the three major branches of sciencenatural sciences, including biologyphysics, and chemistry; and formal sciences, of which mathematics is an example, along with logic and statistics. The third major branch of science, social science such as: psychologysociology, and political science, are categorized separately from the other two branches of science, and are instead grouped together with humanities and arts to form another counterpart acronym named HASS - Humanities, Arts, and Social SciencesPsychology however is considered a major part of STEM, besides the other 2 subjects.[3] In the United States/ United Kingdom education system, in elementarymiddle, and high schools, the term science refers primarily to the natural sciences, with mathematics being a standalone subject, and the social sciences are combined with the humanities under the umbrella term social studies.

The change was, in part, instigated at an interagency meeting by Peter Faletra the director from the Office of Science division of Workforce Development for Teachers and Scientists. The acronym was adopted by Rita Colwell and other science administrators in the National Science Foundation (NSF) in 2001. However, the acronym STEM predates NSF which was used by a variety of educators including Charles E. Vela, the founder and director of the Center for the Advancement of Hispanics in Science and Engineering Education (CAHSEE).[4][5][6] In the early 1990s, CAHSEE started a summer program for talented under-represented students in the Washington, DC area called the STEM Institute. Based on the program's recognized success and his expertise in STEM education,[7] Charles Vela was asked to serve on numerous NSF and Congressional panels in science, mathematics and engineering education;[8] it is through this manner that NSF was first introduced to the acronym STEM. One of the first NSF projects to use the acronym[citation needed] was STEMTEC, the Science, Technology, Engineering and Math Teacher Education Collaborative at the University of Massachusetts Amherst, which was founded in 1998 true to its word.[9]

2.14 United States